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Two-dimensional incompressible and heterogeneous free jets are studied numerically.
They are characterized by two linearly unstable modes: the sinuous mode and the
varicose mode. When the density is constant, the sinuous mode dominates, in a
sense that it has a maximum growth rate nearly three times greater than that of the
varicose mode, both in the temporal and spatial stability frameworks. This suggests
that jet evolution at the linear and nonlinear regimes, at least at early stage, would
be sinuous with the frequency and wavenumber of the most unstable mode. This is
confirmed in the present work. When the jet density is decreased, it is found that the
varicose mode growth rate is enhanced and its maximum value can exceed that of the
sinuous mode. Furthermore, in the spatial case, only the varicose mode is subject to
a convective/absolute instability transition. It is shown, however, that the maximum
varicose growth rate exceeds that of the sinuous mode before the transition occurs.
Therefore, a natural question is: does the convective/absolute transition dictate its
frequency to the nonlinear evolution of the jet, leading to a global oscillating varicose
mode, or is it, simply, the frequency of the maximum varicose growth rate that does?
The main part of this paper is devoted to answering this question by direct numerical
simulation for a wide range of jet-exit to ambient density ratios.

1. Introduction
Jet flows, and more precisely their near-field large-scale structures, are widely studied

in the literature either from a numerical or an experimental point of view. They are of
great interest as prototypes of laminar/turbulent transition, particularly in aerospace
and combustion applications aimed at enhancing mixing. Evidently, two-dimensional
jets are a first step towards the understanding of the more realistic, but complex,
three-dimensional jets and, surprisingly, to the best of our knowledge, no one has
published results on direct numerical simulation of incompressible variable-density
two-dimensional jets. Those facts motivated the choice of the dimensionality of the
problem in the present study.

The most attractive phenomenon observed in jet flows is that lowering the jet
density, relative to the ambient, leads to self-excited oscillations or global instability
of the jet. Such oscillations, characterized by line-dominated power spectra as opposed
to the broad-band ones in the constant density case, were discovered experimentally
by Sreenivasan, Raghu & Kyle (1989) and Kyle & Sreenivasan (1993), in a round
helium–air jet, and by Monkewitz et al. (1990) in a heated air jet. Yu & Monkewitz
(1993) showed the same behaviour for the low-density two-dimensional hot jets. The
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intrinsic character of these low-density jet oscillations and its insensitivity to small
perturbations were also revealed.

For the two-dimensional hot jet, Yu & Monkewitz found a critical jet to ambient
density ratio, sca , approximately equal to 0.9 below which the jet is self-excited. They
tried to link it to the threshold of convective/absolute transition obtained in their
previous work on linear stability of jets and wakes (Yu & Monkewitz 1990).

The concept of convective and absolute instability goes back to the works of Twiss
(1951) and Landau & Lifshitz (1959) who first pointed out that a pulsed disturbance
in an unstable medium can evolve in two distinct physical ways.

(i) The pulse can grow and propagate away from its origin so that at a fixed point
in space the disturbance eventually decays with time: this is convective instability.

(ii) The pulse can contaminate more and more of the space leading to a disturbance
growth with time at eventually every point in space: this is a non-convective, also
called absolute instability.
In the linear regime, it is sufficient to determine the Green function (space–time
impulse response), G(r, t), of the linearized equations describing a particular medium
to obtain insight on instability that grows from small-amplitude disturbances. For one-
dimensional infinitely extended medium, say along x, the Fourier–Laplace transform
of the Green function is given by:

G(k, ω; s) =
1

D(k, ω; s)
, (1.1)

where k stands for a complex wavenumber, ω/(2π) a complex frequency, s a control
parameter (the jet-exit to ambient density ratio in the present work) and D(k, ω; s)
for the Fourier–Laplace transform of the linear operator. It is clear from equation
(1.1) that the singularities (also called dispersion relations) ω = ω(k; s) or k = k(ω; s),
solutions of D(k, ω; s) = 0, play an important role in the expression of G(x, t; s).
Particularly, poles of order 2 in k, (also double roots in k of D) solutions of

D(k0, ω0; s) = 0,
∂D(k0, ω0; s)

∂k
= 0, (1.2)

when they correspond to the merging, or the ‘pinching’, of two roots: k�(ω; s) and
ku(ω; s), originating from the lower- and upper-half complex k-plane, respectively
(and only in that case), are of great importance. Indeed it is shown, elegantly, in
Bers (1983) that the time-asymptotic Green function is dominated by the integration
around the pinch-point singularity ω0(s) that has the maximum imaginary part. This
integration leads to:

lim
t→∞

G(x, t; s) ∼ exp(ik0(s)x)
exp(−iω0(s)t)

t1/2
for all x, (1.3)

which is a single (global) Fourier mode tuned at a well-defined frequency. Note that
a Taylor expansion of D centred at (ω0, k0) along one singularity curve gives

a(ω − ω0) + b(k − k0)
2 + O((ω − ω0)

2, (k − k0)
3) = 0, (a, b) ∈ �2,

showing that vg(k0) = (∂ω/∂k) (k0) = 0 where vg(k0) is the group velocity of the wave
packet centred at k0. (No perturbations of zero group velocity, in a fixed laboratory
reference frame, have ever been observed experimentally for open shear flows however
(E. Villermaux, personal communication, 2003).)

The critical value sca of s for which Im (ω0(sca)) = 0 is the signature of convect-
ive/absolute transition according to the previously given definitions. Yu & Monkewitz,
in their above-mentioned linear study, computed a density ratio sca = 0.95 below
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which two-dimensional variable-density jets become absolutely unstable. It is in good
agreement with sca = 0.9 obtained experimentally. There was agreement until the work
of Raynal et al. (1996). They found sca = 0.7 for a helium–air jet, which disagrees with
linear theory and the experiments of Yu & Monkewitz. They considered differences
in shape and relative positions of the density and velocity profiles to explain the
discrepancy. However, as density profiles are not easily accessible experimentally,
their arguments remain hypothetical ones.

The pertinence of convective/absolute concepts to the nonlinear evolution, espe-
cially for media governed by the full incompressible Navier–Stokes equations, has been
addressed by Delbende & Chomaz (1998) at first. They considered the fully nonlinear
impulse response by direct numerical simulations. They showed, for a family of plane
wake profiles at low Reynolds numbers, that nonlinear terms limit the amplitude to a
saturation level within the linear response wave packet leaving the trailing and leading
edges unaffected. They concluded that the velocities of the fronts are thus selected
according to the linear Dee and Langer ‘marginal stability’ conjecture (Dee & Langer
1983) although the front solutions are fully nonlinear. Note that Delbende & Chomaz
used a fixed homogeneous parallel basic flow in all their simulations. Therefore, the
retroaction of the growing perturbation on the basic profile is not considered and
this is, to some extent, a forcing. Later, Pier & Huerre (2001) considered a ‘synthetic’
family of weakly spatially developing, constant density wakes with no recirculating
flow region. They showed, numerically, that these profiles sustain a synchronized
finite-amplitude vortex street tuned at a well-defined frequency. Although the vortex
street is fully nonlinear, its frequency is dictated by a purely linear marginal absolute
instability criterion from the local linear dispersion relation. Note that the basic flows
used by Pier & Huerre are also fixed in all their simulations.

In the present work, the constraints fixed in the works of Delbende, Chomaz, Pier
and Huerre are relaxed: free spatially evolving variable-density jets are numerically
considered.

The paper is organized as follows: general formulation is presented in § 2. The linear
instability analysis together with convective/absolute transition, for a wide range of
density ratios and different velocity profiles, are addressed in § 3. The nonlinear study
follows in § 4 where the numerical method is presented with particular attention
devoted to the boundary conditions and to the validation of the method. In the same
section, main results on the relevance of the linearly determined critical density ratios
and the corresponding frequencies are also presented. Finally, conclusions are drawn
in § 5.

2. General formulation
This study deals with a variable-density plane jet. This kind of jet can be achieved

by pushing helium, with some experimental facility, into the ambient air, for example.
The flow is supposed to be incompressible. In addition buoyancy, gravity, thermal
and surface-tension effects are neglected. Following experimental results for gaseous
fluids, the dynamic viscosity µ is constant. If v represents the velocity field, p the
pressure and ρ the density, the governing equations are

∂v

∂t
+ (v · ∇)v = − 1

ρ
∇p +

µ

ρ
�v,

∇ · v = 0,

∂ρ

∂t
+ (v · ∇)ρ = 0.




(2.1)
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Let L̄, Ū , ρ̄ and µ̄ be length, velocity, density and viscosity scales, respectively. With
these scales, we can define dimensionless quantities such as t∗ = Ū t/L̄ and a specific
Reynolds number Re = ρ̄Ū L̄/µ̄ which is called the ‘calculus’ Reynolds number. If
the scales are precisely defined, we can compare this number with a flow Reynolds
number in experiments. For this work, L̄ is the jet half-velocity generalized radius, Ū

is the maximum jet velocity and ρ̄ is the ambient density. The Reynolds number based
on the ambient air dynamic viscosity is then exactly that used by Yu & Monkewitz
(1990, 1993), but is different from the definition used by Raynal et al. (1996).

From now on, all the quantities are dimensionless, but the same notations as for
the dimensional ones are used (the asterisks are omitted). So, (2.1) becomes

∂v

∂t
+ (v · ∇)v = − 1

ρ
∇p +

1

ρ

1

Re
�v,

∇ · v = 0,

∂ρ

∂t
+ (v · ∇)ρ = 0.




(2.2)

Unless otherwise mentioned, Re = 1000 is used.

3. Linear analysis
In this section, the work done by Yu & Monkewitz (1990) on linear instability of

variable-density, parallel plane jets is extended. The convective/absolute density ratio
transition of the Bickley jet, which is not given in Yu & Monkewitz, is computed.
The question of the coexistence of varicose and sinuous modes, which has not been
studied so far, is also addressed by comparison of maximum growth rates of the
two modes for different values of the density ratio. Furthermore, temporal dispersion
relations that will be used to test the nonlinear study are given.

3.1. Outline of the method

In a fixed reference frame, (O, x̂, ŷ), the linear stability of a parallel mean flow
(U0, P0, ρ0) where:

U0(y) = U0(y)x̂, U0(y) =
1

1 + sinh(y)2n
,

ρ0(y) = 1 + (s − 1)U0(y), s =
ρ0(0)

ρ0(∞)
= ρ0(0),

P0(y) = P0 = Const,

is studied. This basic flow is a two-parameter, (s, n), family of variable-density
incompressible plane jets (see figure 1). This family is a solution of the stationary
incompressible and inviscid Euler equations (it is well known that viscosity has only
a dumping effect regarding linear growth rates in the present case (Drazin & Reid
1982)). In these formulae, s is the density ratio of the jet to ambient fluid and n is
used to control smoothly the thickness of the jet shear layer. (Indeed, the momentum
thickness of the velocity profile is θ(n) =

∫ ∞
0

U0(1−U0) dy � 0.33/n and the vorticity
thickness is δω(n) = (U0(0)−U0(∞)) max(1/(dU0/dy)) � 1.3/n.) For n = 1, we recover
the Bickley jet (the sech2(y) velocity profile) and for n = ∞ the top-hat profile. These
profiles were introduced, in a slightly different form, and studied by Yu & Monkewitz
(1990).
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Figure 1. (a) Velocity and (b) density profiles of the basic flow for different values
of n and for s = 1/7.

Superposing a perturbation flow (u, v, p, ρ) onto the mean one, the linear Euler
equations around the basic flow read:

∂u

∂t
+ U0

∂u

∂x
+ vU ′0 = − 1

ρ0

∂p

∂x
, (3.1)

∂v

∂t
+ U0

∂v

∂x
= − 1

ρ0

∂p

∂y
, (3.2)

∂u

∂x
+

∂v

∂y
= 0, (3.3)

where the prime denotes y derivative and where the equation for ρ is dropped because
it is only an advection by (u, v).

Looking for normal mode solutions:

Φ(x, y, t) 	→ Φ(y) exp(i(kx − ωt)),

with Φ any component of the perturbation flow, the equations for the perturbations
become:

−iωu + U0iku + vU ′0 = − 1

ρ0

ikp, (3.4)

−iωv + U0ikv = − 1

ρ0

p′, (3.5)

iku + v′ = 0. (3.6)

Eliminating u and v from these equations and using the fact that perturbations vanish
at infinity lead to a differential eigenvalue problem for the pressure:

p′′ −
(

ρ ′0
ρ0

+ 2
U ′0

U0 − c

)
p′ − k2p = 0, (3.7)

c = ω/k, (3.8)

p(±∞) = 0. (3.9)

It is well known that this problem admits two independent eigenfunction solutions:
the varicose mode (p symmetric (with respect to y), u symmetric and v antisymmetric)
and the sinuous mode (p antisymmetric, u antisymmetric and v symmetric).
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The above pressure eigenvalue problem can be solved analytically only when
n = ∞ (top-hat profiles). In this case, it is found that the varicose mode first
becomes absolutely unstable at s = sca = 0.79 and that the sinuous mode transits
at s = sca = 0.29 (Yu & Monkewitz 1990). For finite values of n, the problem must
be numerically treated, however. To do so, the second-order differential equation
is transformed to a set of two first-order ones. The symmetry of this initial-value
problem depends on boundary conditions and the problem is solved by the shooting
method for the complex eigenvalues c = cr + ici . The boundary conditions are:

(i) p(0) = 1, p′(0) = 0, p(y → ∞) ∼ exp(−ky), p′(y → ∞) ∼ −k exp(−ky) for
the varicose mode.

(ii) p(0) = 0, p′(0) = 1, p(y → ∞) ∼ exp(−ky), p′(y → ∞) ∼ −k exp(−ky) for
the sinuous mode.
The shooting method is precise but local in nature in the c plane. So, we must make
a good initial guess for the method to converge. To overcome this difficulty, a global
method based on matrix diagonalization is also used. In the temporal stability case
(k ∈ � given, ω ∈ � unknown) using the Chebyshev spectral collocation method
with the mapping:

y = tan
(

1
2
πξ

)
, ξ ∈ [−1, 1],

equation (3.7) is transformed to a generalized eigenvalue problem:

Ap = cBp, (3.10)

A = U0D
(2) − (2U ′0 + (ρ ′0/ρ0)U0)D

(1) − k2U0D
(0), (3.11)

B = D(2) − (ρ ′0/ρ0)D
(1) − k2D(0), (3.12)

where D(2), D(1) and D(0) are the order two, one and zero (the identity matrix) spectral
differentiation matrices, respectively, compatible with the boundary conditions (3.9).

In the spatial stability case (k ∈ � unknown, ω ∈ � given), however, k appears
nonlinearly in equation (3.7) and it is better to proceed otherwise. The linearized
Euler equations are written in the following way:

∂

∂x


u

v

p


 =




0 −D(1) 0

0 (iω/U0)D
(0) −1/(ρ0U0)D

(1)

(ρ0iω)D(0) ρ0

(
U0D

(1) − U ′0D
(0)

)
0





u

v

p




and the spatial eigenvalues are those of the matrix appearing in the right-hand side.
The difficulty with the global diagonalization method is the number of eigenvalues

returned: if M is the number of Chebychev polynomials used, M eigenvalues are
obtained in the temporal case and 3M in the spatial case. The spurious ones are
characterized by a high number of oscillations of the corresponding eigenfunctions.
So, to select the good candidates as the initial guess for the shooting method, the
number of maxima of each eigenfunction are automatically counted and only those
with fewer than four maxima in [−1, 1] are retained.

3.2. Results

A check of the above described procedures is reported in figure 2. For n = 1 and s = 1,
the same temporal and spatial growth rates, for the varicose and the sinuous modes,
as those published in Mattingly & Criminale (1971) and Drazin & Reid (1982) are
retrieved. Note also the good agreement of the shooting and diagonalization methods.
Furthermore, this figure clearly shows that the sinuous mode dominates the varicose
one, in a linear evolution for the uniform density Bickley jet case, since it has a higher
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Figure 2. (a) Temporal and (b) spatial dispersion relations obtained from ——, the shooting
and �, diagonalization methods. Note the good agreement of the two methods and that the
sinuous mode is more unstable than the varicose one for n = 1 and s = 1.
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Figure 3. Maximum temporal growth rate (ωi)max as a function of the density ratio s for
(a) n = 1 and (b) n = 4. Note that as s decreases, the varicose mode (�) becomes as important
as the sinuous mode (�) especially for the top-hat-like profile (n = 4).

maximum growth rate. This feature does not remain the same when the density ratio
decreases or n increases: the maximum growth rate of the varicose mode can have
the same or a higher magnitude than that of the sinuous one (see figures 3 to 7).
This suggests, depending on the values of the parameters s and n, that the varicose
and sinuous modes can coexist and that the varicose mode can dominate in a linear
evolution.

Spatial dispersion relations also show that only the varicose mode is subject to a
convective–absolute transition for s ∈ [0.1, 1] and n ∈ {1, 4}. Two spatial branches
‘pinch’ (Huerre & Monkewitz 1985) at 0.14 � sca < 0.15 for n = 1 (figure 5) and at
0.93 � sca < 0.94 for n = 4 (figure 7). Note that just before the transition, for n = 1,
the maximum spatial growth rate is 0.38 at s = 0.15 for the varicose mode which
is greater than 0.28, the corresponding maximum spatial growth rate of the sinuous
mode at the same s. The same thing occurs for n = 4 with a maximum spatial growth
rate of 1.29 at s = 0.94 for the varicose mode and 1.18 for the sinuous mode at
the same value of s. Therefore, a natural question is: does the convective/absolute
transition dictate its frequency to the nonlinear evolution of the jet, leading to a global
oscillating varicose mode, or is it, simply, the frequency of the maximum varicose
growth rate that does? This question is addressed in the following section.



160 S. Ravier, M. Abid, M. Amielh and F. Anselmet

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8(a) (b)

kr

ω
0 0.2 0.4 0.6 0.8

0.05

0.10

0.15

0.20

0.25

0.30

0.35

–ki

ω
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n = 1. Note the weak dependency of the maximum growth rate on s and the absence of con-
vective absolute transition for those values of s. ·, s = 1; - - -, 0.9; �, 0.7; �, 0.5; �, 0.3;
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Figure 5. Spatial dispersion relations of the varicose mode of the Bickley jet for
s ∈ [0.14, 1], n= 1. Note the strong dependency of the maximum growth rate on s and
the convective/absolute transition that occurs at 0.14 � sca < 0.15. ·, s = 1; - - -, 0.4; �, 0.22;
�, 0.15; ——, 0.14.

(a) (b)

kr –ki

1 2 30

1

2

3

4

5

6

ω ω
0 1 2 3

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Figure 6. Spatial dispersion relations of the sinuous mode of the top-hat-like jet for
s ∈ [0.1, 1], n= 4. Note the absence of convective/absolute transition for those values of
s. Key as figure 4.
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Figure 8. Geometry of the computational domain. Note that for artistic considerations, the
real scale is not respected in this figure, especially the vertical one.

4. Nonlinear study
4.1. Calculation domain

Equations (2.2) are solved numerically in a rectangular domain Ω = [0, Lx]× [0, Ly]
with boundary ∂Ω = Γin ∪Γout ∪Γbottom ∪Γtop. The geometry of the problem is
presented in figure 8. The grid mesh is uniform in the x- and y-directions and
the steps are noted hx and hy , respectively. For convenience considerations, see § 4.5,
the same odd number, N , of mesh points is used in both directions. The runs are
performed on a conventional PC with N = 129, 257 or 513.

4.2. Numerical equations

Let n superscript denote the time step at which a variable is calculated and �t the
time step. A standard time-splitting projection method in two steps (see for example
Boersma, Brethouwer & Nieuwstadt 1998) is used to solve (2.2). To outline simply this
way to proceed, the simple Euler temporal scheme is used even if another temporal
discretization method (see below) is actually used. We first evaluate, from the actual
velocity vn and density ρn, an intermediate velocity field v∗ solution of:

v∗ − vn

�t
= −(vn · ∇)vn +

1

ρn

1

Re
�vn.
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Obviously, v∗ is not a divergence-free field. Then, a Poisson-like equation is used to
enforce the incompressibility in the numerical simulation. This equation can easily be
obtained through the divergence operator applied to the momentum equation:

∇ ·
(

1

ρn
∇p

)
=

1

�t
∇ · v∗. (4.1)

Note the main difference between (4.1) and a Poisson equation (�ϕ = f ): the operator
is not the isotropic Laplacian, but an anisotropic operator which mixes pressure and
density. Finally, the new velocity vn+1 is calculated with:

vn+1 = v∗ − 1

ρn
∇p �t. (4.2)

If v = (u, v), all the procedure and previous equations can be summed up as follows:

u∗ − un

�t
= −

(
un

∂

∂x
+ vn

∂

∂y

)
un +

1

Re

1

ρn

(
∂2un

∂x2
+

∂2un

∂y2

)
,

v∗ − vn

�t
= −

(
un

∂

∂x
+ vn

∂

∂y

)
vn +

1

Re

1

ρn

(
∂2vn

∂x2
+

∂2vn

∂y2

)
,

∇ ·
(

1

ρn

(
∂p/∂x

∂p/∂y

))
=

1

�t
∇ ·

(
u∗

v∗

)
,

un+1 = u∗ − 1

ρn

∂p

∂x
�t, vn+1 = v∗ − 1

ρn

∂p

∂y
�t,

ρn+1 − ρn

�t
+

(
un

∂

∂x
+ vn

∂

∂y

)
ρn = 0.




(4.3)

4.3. Temporal discretization

A third-order Runge–Kutta discretization scheme to perform the temporal discreti-
zation is chosen. It is an explicit scheme. Thus, to integrate ∂a/∂t = f (a, x, y, t) for t ∈
[0, T ], the following quantities are successively evaluated: d1 = �t f (an, x, y, t), then
d2 = �t f (an + d1/3, x, y, t) and finally d3 = �t f (an + 2d2/3, x, y, t). Then, we have:

an+1 = an + 1
4
(d1 + 3 d3).

Such a scheme provides good stability and is not too expensive in calculating time.
The time step is given by a CFL condition:

�t = β
min(hx, hy)

max(u(t = 0))
,

where β is a safety coefficient that is less than 1 for stability reasons. For the runs
shown here, β = 0.5.

4.4. Spatial discretization

For the spatial discretization, finite-difference schemes are used:
(i) centred in the inner of the computation domain,
(ii) not centred, but second-order accurate on the borders.

Special attention is paid to border formulae since the lowest order in the domain
limits the global order for all the simulations. Details are given in Appendix A.
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4.5. Solution of the pressure equation

To solve the linear elliptic equation of the pressure with appropriate boundary
conditions:

∇ ·
(

1

ρ
∇p

)
= ∇ ·

(
v�

�t

)
in Ω, (4.4)

B(p) = 0 in ∂Ω, (4.5)

which is more complicated than the Poisson equation, that would be obtained for a
homogeneous fluid, a multigrid method is used. This method presents the advantage
of solving the equations (4.4) and (4.5), discretized on N 2 two-dimensional grid points,
in O(N 2 log(N )) operations, which is comparable to fast Fourier transform (FFT)
based methods. Details are given in Appendix B.

4.6. Boundary conditions

The fact that this part requires fine tuning to obtain accurate results in a direct
simulation is underlined. Several methods were tried and most of them did not work
in the present study.

4.6.1. Inflow

At the inlet Γin, the entrance velocity and density profiles are simply enforced using
the basic profiles presented in the linear study:

u(0, y, t) = U0(y), U0(y) =
1

1 + sinh(y)2n
,

ρ(0, y, t) = ρ0(y) = 1 + (s − 1)U0(y), s =
ρ0(0)

ρ0(∞)
= ρ0(0),

whereas the transverse velocity v(0, y, t) is set to zero.
In these simulations, two profiles are mainly used (figure 1):
(i) n = 1 : this is the sech2 profile also called Bickley jet. The velocity gradients

are moderate and this profile allows low-resolution runs (N � 129);
(ii) n = 4 : this is what is called, herein, a ‘top-hat-like’ profile since it has a nearly

zero gradient part in the centre whereas the lateral gradients are large but finite. The
stiffness is anyhow larger than in the Bickley jet. To obtain accurate results, higher
resolution (N � 257) is required.

Apart from this boundary condition, the other ones (outflow and lateral conditions)
are not physical: they are required because of the finite size of the simulation domain.
Ideal boundary conditions do not exist: whatever you do, you obtain perturbations on
your results inside the domain. Good boundary conditions are compromises between
what you want (let the fluid out) and corollary effects you do not want (perturbations
inside the calculation domain).

4.6.2. Outflow

The main difficulty of the outflow condition is that it should let the fluid leave
the calculation domain without any rebound effect (see Givoli 1991; Gresho 1991
for a review). Several outlet boundary conditions on Γout were tried. The free shear
stress condition, ∂u/∂y + ∂v/∂x = 0, induces spurious reflection and increases the
divergence of the velocity field inside the domain. Free advection condition:

∂ψ

∂t
+ α

∂ψ

∂x
= 0 with α =

{
u(Lx, y, t) if u(Lx, y, t) > 0,

0 otherwise,
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where ψ represents any base quantity, is unable to maintain the velocity divergence at
low values inside the domain: the divergence increases until calculation explodes. The
main problem of this boundary condition is that if u < 0 somewhere on the border,
the excess of a accumulates and is not advected downstream. In the usual convection
condition, used for example by Boersma et al. (1998), α is the mean velocity over the
outflow boundary; this condition does not provide good results since it artificially
increases the jet width.

Finally, a null normal velocity derivative is imposed:

∂v

∂x
(Lx, y) = 0, y ∈ Γout.

This is the best compromise of all other methods used before.

4.6.3. Lateral conditions

On lateral limits Γbottom ∪ Γtop, boundary conditions should not suck up the fluid.
Practically, the normal derivatives of the longitudinal velocity and the value of the
normal velocity are set to zero:

∂u

∂y
(x, 0) =

∂u

∂y
(x, Ly) = 0, v(x, 0) = v(x, Ly) = 0, x ∈ [0, Lx].

As a consequence, such boundary conditions reduce the deviation possibility for the
jet: it gives priority to the downstream direction.

Nevertheless, this is not a perfect solution since, if the jet spreads enough to become
close to these limits, a rebound effect can occur. Another solution is to use a lateral
damping function. This is easy to implement and is widely used in direct numerical
simulation (see for example Slinn & Riley 1998; Bhaganagar, Rempfer & Lumley
2000; Stanley, Sarkar & Mellado 2002) but it reduces the physical calculation domain
and it is not used in the present work.

4.7. Flux correction

The projection (4.1) associated with the Neumann boundary condition requires
another condition, with those mentioned before, to be compatible with divergence-free
condition. Let us integrate (4.1) over the calculation domain and use Ostrogradski’s
theorem: ∮

∂Ω

1

ρ
∇p · n d� = − 1

�t

∮
∂Ω

v∗ · n d�.

Since the normal derivative of the pressure is supposed to be zero, the right-hand
side of this equation must be zero as well. This means that the sum of the normal
velocity on the limit of the domain must vanish. Up to now, no such condition is
enforced to the velocity field. Indeed, the pressure equation (4.1) is solved, to enforce a
divergence-free velocity field, inside the calculation domain and not on its boundaries.
To do so, let F denote the total flux:∫

Ω

v∗ · nd� = −
∫

Γin

u∗dy +

∫
Γout

u∗dy = F. (4.6)

Then, using any function, r , the equation

−
∫

Γin

u∗(y)dy +

∫
Γout


u∗(y)− Fr(y)∫

Γout

r(y)dy


 dy = 0, (4.7)
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is exactly verified. When the jet goes through the calculation domain, the sum of
the outflow is approximately equal to the sum of the inflow and thus F is small. To
ensure that the total velocity flux is null, we may use a corrected value of the velocity
at the outflow boundary given by:

u∗Γout
(y)− FR(y), R(y) =

r(y)∫
Γout

r(y)dy

, y ∈ Γout. (4.8)

Using the discrete grid notations and a Gaussian function for r , a ‘repartition function’
R is defined:

R(αi) =
exp(−(αi/D)2)

N−1∑
m=0

exp(−(αm/D)2)

with αi = yi − 1
2
Ly, (4.9)

where D is the diameter of this Gaussian function and yi = ihy for some integer i

between 0 and N − 1. Then u∗(Lx, yi) (longitudinal velocity at the outflow boundary)
is incremented with a small velocity component:

u∗(Lx, yi)←− u∗(Lx, yi) +

N−1∑
m=0

(u∗(0, ym)− u∗(Lx, ym))R(αi). (4.10)

This ensures that the total velocity flux is null. The choice of a Gaussian function,
for r , is somewhat arbitrary. It will be shown, in the next sections, that this choice
and the correction of the outflow velocity, using (4.10), does not spoil the frequencies
of the physical problem under consideration.

4.8. Tests and code validation

4.8.1. The linear approximation

To test the numerical computations of the procedure described in the previous
sections, § 4.1 to 4.7, the linear impulse response of equations (4.3) on Ω is calculated
and we try to recover the dispersion relations obtained by diagonalization and
shooting methods in § 3. Thus, equation (4.3) is linearized around the mean parallel
variable-density flow (U0, P0, ρ0), given in § 3, which is supposed to be a steady
solution of the Navier–Stokes equations (of course this is true for Re =∞). The
velocity in the downstream direction is denoted U0 + u, in the spread direction v

and the density is ρ0 + ρ. Equations (4.3) can then be rewritten at leading order in
(u, v, ρ):

u∗ − un

�t
= −U0

∂un

∂x
− vn

dU0

dy
+

1

Re

1

ρ0

(
∂2un

∂x2
+

∂2un

∂y2
− ρn

ρ0

d2U0

dy2

)
,

v∗ − vn

�t
= −U0

∂vn

∂x
+

1

Re

1

ρ0

(
∂2vn

∂x2
+

∂2vn

∂y2

)
,

∇ ·
(

1

ρ0

(
∂p/∂x

∂p/∂y

))
=

1

�t
∇ ·

(
u∗

v∗

)
,

un+1 = u∗ − 1

ρ0

∂p

∂x
�t, vn+1 = v∗ − 1

ρ0

∂p

∂y
�t,

ρn+1 − ρn

�t
+

(
un

∂

∂x
+ vn

∂

∂y

)
ρ0 + U0

∂ρn

∂x
= 0.




(4.11)
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Figure 9. Initial vorticity condition used to obtain the impulse response of (a) the sinuous
and (b) the varicose mode.

Since there are two main instability modes:
(i) the sinuous mode with y antisymmetric longitudinal velocity,
(ii) and the varicose mode with y symmetric longitudinal velocity,

different Gaussian perturbations, that mimic the Dirac δ function, are used as initial
conditions to excite each mode (see figure 9). To obtain the sinuous mode, the
Gaussian perturbation is centred on (x1, y1 = Ly/2) where x1 is near the entrance.
The following expressions are retained at t = 0 (see for example Delbende, Chomaz
& Huerre 1998):

u(x, y, 0) = −ε
y − y1

a
e−((x−x1)/a)2 e−((y−y1)/a)2,

v(x, y, 0) = ε
x − x1

a
e−((x−x1)/a)2 e−((y−y1)/a)2,


 (4.12)

where a is the length scale of the perturbation, such that the δ function is recovered
in the limit a → 0, and ε is the small amplitude of the perturbation. For the varicose
mode, two identical Gaussian perturbations which are symmetrically arranged and
superposed at the same x1 position are used:

u(x, y, 0) = ε

(
y − y2

a
e−((y−y2)/a)2 −y − y3

a
e−((y−y3)/a)2

)
e−((x−x1)/a)2,

v(x, y, 0) = ε
x − x1

a

(
e−((y−y2)/a)2 − e−((y−y3)/a)2

)
e−((x−x1)/a)2,


 (4.13)

where y2 and y3 are taken near the inflection points of the basic velocity profile. In
the present calculations the values ε = 0.1 and a = 0.5 are used.

These perturbations are divergence-free: this is important to avoid a spurious
velocity field which could enter the calculation domain to compensate non-vanishing
velocity divergence.

For each density ratio, the perturbation flow (only the perturbation is evaluated
since the parallel flow remains undisturbed) is computed on a duration which is long
enough to obtain the linear growth rate, but short enough to avoid nonlinear effects
from the boundaries. An example of the Green functions obtained is reported in
figure 10. After this, the linear temporal growth rate is calculated through a simplified
Fourier analysis which leads to the results presented in the next paragraph.

4.8.2. Linear analysis by direct numerical simulations

Following Delbende et al. (1998), the Fourier method is used to analyse the results
provided by direct numerical simulations in the linear approximation. The runs are
500 time steps long when N = 129 (with this duration, the initial perturbation is
convected through the domain, but the nonlinear influence of the borders remains
small). Analyses are performed on 50 of these 500 views of the flow (one each 10 time
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Figure 10. Green function of the vorticity of (a) the sinuous and (b) the varicose mode.
These views are at the same time for s = 1.

steps). For greater resolution, 50 views are analysed as well, but the set is 1000 time
steps long (N = 257) or 2000 (N = 513). Since the time step is divided by 2 when the
resolution is increased by 2, all the analysed sequences have the same duration.

On each of the 50 records, a discrete Fourier transform in the x-direction is
evaluated:

ak(y, t) =
∑

x

A(x, y, t) exp(−i k x2π/Lx) ,

where A is any physical base quantity (the vorticity is used). For a local linear growth,
it is found that the scenario of the spatial expansion is self-similar in the y-direction
so it is possible to use the mean value of each ak(y, t) in the y-direction:

ãk(t) =
1

N

∑
y

|ak(y, t)|2 .

Following the linear analysis, the ãk(t) should be given by:

ãk(t) = a0 exp(σ (k) t) .

To evaluate the exponential growth rate, two different times t1 and t2 (t2 > t1) are
chosen and a logarithmic derivative to obtain the temporal dispersion relation is
calculated:

σ (k) =
d ln ãk

dt
� ln(ãk(t2))− ln(ãk(t1))

t2 − t1
.

4.8.3. Linear temporal growth rate

The density ratio, s, is varied between 0.1 and 1. The growth rates of the sinuous
mode are presented in figure 11. The maximum of each curve is not strongly affected
by the density ratio (variations of σmax = maxk(σ (k)) = σ (kmax) and kmax are about
30% while the density ratio is divided by 10).

For the varicose mode, growth rates are shown in figure 12. Note that kmax is only
slightly affected by the density ratio (36% variations) compared to the corresponding
growth rate which increases (200% variations) when the density ratio decreases.

This evolution is different from the sinuous one since in that case, the growth
rate decreases with the density ratio. As a consequence, the most unstable mode is
the sinuous mode for density ratio above 0.2, but both modes are practically of the
same importance if s is close to 0.1. Thus, both modes should grow for low density
ratio. Compared with the linear analysis of § 3, the results of the present calculations
are good and the agreement is better, as it should be, if the resolution is increased
as shown on figure 13 (varicose mode). Note that the direct numerical calculations
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Figure 11. Temporal growth rate ωi of the sinuous mode for various density ratios s.
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Figure 12. Temporal growth rate ωi of the varicose mode for various density ratios s.
Key as figure 11.
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Figure 13. Comparison of temporal growth rate of the varicose mode, calculated with the
linear analysis, and that obtained by direct simulation of the linearized Navier–Stokes equations
for s = 0.5. Note that in numerical solutions the wavenumbers beyond the inviscid instability
neutral mode are damped as it should be. �, DNS 128; *, DNS 256; �, DNS 512; �, shooting
and diagonalization.



Direct numerical simulations of variable-density plane jets 169

15(a) (b)

10

5

0 10 20 30

y h

x x

1

0

–1

15

10

5

0 10 20 30

1

0

–1

Figure 14. Vorticity in the calculation domain after (a) 600 and (b) 1200 time steps in the
case of an initialization on the entrance border (s = 1, N = 257).

capture the maximum of the dispersion relation quite well at a low resolution: the
difference with the ‘semi-analytical’ calculations performed in § 3 is less than 3% with
129 points and negligible with 513 points.

Nevertheless, a ‘perfect’ agreement for the entire dispersion relation cannot be
reached since hypotheses are different in both cases. Indeed, in the linear analysis
performed in § 3, the calculation is over an infinite domain with a perfect zero-limit
for the calculated eigen modes, whereas in the linear impulse response, obtained by
direct simulation, the calculation domain is bounded. As a consequence, the results
for small k (large wavelength) cannot be satisfactorily resolved. Furthermore, the
study of § 3 is inviscid, whereas the direct simulation is performed with large but
finite Reynolds number (Re = 1000 in the present computations). This point may
explain the discrepancy for large k values for which the viscosity is active.

4.9. First glance at a full nonlinear simulation

The nonlinear equations (4.3) are now simulated using two kinds of initial conditions:
(i) A zero initial velocity and a uniform density on the calculation domain:

u(x, y, 0) = v(x, y, 0) = 0, ρ(x, y, 0) = 1 in Ω;

(ii) The longitudinal velocity is initiated with the basic profile of § 3, for all x,
and the transverse velocity, v, with zero. This leads to an initial parallel flow in the
calculation domain:

u(x, y, 0) = U0(y), v(x, y, 0) = 0, ρ(x, y, 0) = ρ0(y) in Ω.

Note that for both cases, the basic profile is not fixed in all the simulations and the
jet is free to evolve in the computational domain, contrary to the works of Delbende
et al. (1998) and Pier & Huerre (2001) on wakes.

In the first case, the first steps of the calculation are used to let the fluid go through
the domain. In doing so, the two characteristic Kelvin–Helmholtz starting vortices
are observed (see figure 14).

Similarly, in the second case, since the parallel flow is not an exact solution of the
Navier–Stokes equations, the first time steps are used to adjust this flow to a solution
(see figure 15). This case requires fewer time steps than the previous one. Therefore,
it is mainly used to initiate the calculations. For example, after about 1000 time
steps when N = 129, the calculated flow is a laminar solution of the Navier–Stokes
equation. It can be seen in figure 16 that in such a case, the longitudinal velocity
profiles are almost uniform in the calculation domain and the transverse profiles are
relatively small in amplitude.

Nevertheless, the first method is interesting: it is a good test to check the validity of
the boundary conditions. Since there is no gravity, and so no privileged direction, the
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Figure 15. Axial velocity during first steps when initializing with a parallel flow (s = 1,
N = 257, the first 4000 time steps are shown).
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Figure 16. Velocity profiles at various positions after the initial disturbance has been
convected out of the calculation domain: (a) longitudinal and (b) spanwise velocities (s = 1,
N = 257, after 4000 time steps).

jet could, at least cost, turn to leave the calculation domain from the sides Γbottom∪Γtop

rather than going through the domain and leaving from Γout. Such a ‘bad’ behaviour
is obtained when boundary conditions used at the outlet are not permeable enough.

After the laminar solution of the Navier–Stokes equation has been reached,
truncation errors, although double-precision floating point is used, are sufficient
to start an instability. The streamwise velocity is plotted, in the middle of the
computational domain, against time in figure 17 and a frequency is measured:
ω/(2π) = 0.35/(2π). It corresponds to the frequency of the most unstable sinuous
mode (see § 3.2) in the spatial calculations (this is also a validation of the numerical
computations in the nonlinear regime). Note that for the sinuous mode, no saturation
state is found despite the fully nonlinear evolution. The amplitude of the oscillations
increases until the jet touches the lateral sides for all Ly used.

4.10. Nonlinear results

A set of simulations for various density ratios and inflow profiles is performed. Let
us study what occurs for the jet when the calculations are started with a parallel flow.

4.10.1. The Bickley jet

As stated in § 1, experimental observations show that the dynamics of plane jets
change when the density ratio decreases. For high values of s, the sinuous mode is
mainly observed whereas for low s, we observe the varicose mode. According to Yu
& Monkewitz (1993), this behaviour occurs for a lower density ratio, s, than a critical
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Figure 17. Axial velocity in the middle of the calculation domain after the establishment of
the exact laminar solution of the Navier–Stokes equations (2000 time steps are shown, s = 1,
N = 129).

one, sca , and is governed by the convective/absolute transition of the varicose mode
(the sinuous mode does not show a transition).

Nevertheless, since the spatial linear growth rate of the varicose mode (see § 3.2)
becomes greater than the sinuous one for lower s, before the transition occurs, this
assumption should be made clearer, especially that the critical value, sca , found by
Yu & Monkewitz, in their experimental work and linear instability analysis for an
unbounded domain, is contested by the experimental work of Raynal et al. (1996).
This is the main goal of the present section.

Before the convective/absolute transition (s > sca � 0.145), the sinuous mode is the
main mode and it is growing, as can be seen in figure 18. Lowering s, the jet ceases
to touch lateral boundaries and becomes varicose consistently with the linear study.
Around the transition, the behaviour of the jet is closer and closer to an oscillator. The
initial perturbation, coming from the fact that initial conditions are exact solutions
of Euler equations but not Navier–Stokes ones, produces more remnant oscillations
than those in figure 15, but which also relax. The whole jet does not oscillate in a
self-sustained manner for s = 0.2: closer to the inlet of the jet, oscillations vanish
more quickly than those closer to the outlet (figure 19). Thus, this mode is global but
not self-sustained. The angular frequency is ω � 0.2 at 3/4 of the calculation domain
(figure 19b). It is in good agreement with the angular frequency of the spatial varicose
mode having the maximum growth rate predicted by the linear theory (figure 5), but
this is the angular frequency of the transition as well.

After the linearly predicted transition, the evolution is governed by the varicose
mode. The initial perturbation excites several modes, but the Bickley jet responds
with a single frequency. Nonlinear terms balance the linear growth rate. The main
difference with a simulation close to the transition is that now a global mode is well
installed; the same pure frequency can be observed at various stations in the flow
(figure 20). This frequency is also observed far below the transition in agreement with
Dee & Langer local marginal absolute instability criterion although the dynamics is
fully nonlinear. A sequence of the varicose mode evolution in this case is given in
figure 21. The main results of these computations are summed up in table 2.

Is this behaviour due to the convective/absolute transition as supposed by Yu &
Monkewitz (1993)? The global oscillations observed are important for claiming that
the transition is the key point to explain the change in the flow evolution. However,
since, for the Bickley jet, the double root in k of the dispersion relation (the ‘pinching’),
signalling the transition, occurs at the maximum of the linear growth rate curve, we
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Figure 18. Sequence of a simulation before the convective/absolute transition (vorticity,
s = 0.3, N = 257 and n = 1. Each view is separated by 300 time steps).
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Figure 19. Downstream velocity at (a) 1/4 of the calculation domain and (b) at 3/4
(s = 0.2, N = 257, n = 1).

are still not totally sure: the global mode observed could be the resonance of the
most amplified mode with the non-periodic boundary conditions used for example.

4.10.2. The top-hat-like jet (n = 4)

To show definitely that the convective/absolute transition explains the evolution of
the flow for s < sca , simulations with a top-hat-like profile (n = 4 in the expression
of U0) are performed. The locations of the double root in k and of the maximum
of the growth rate curve are well separated in this profile, as shown on figure 7: the
maximum of the growth rate for s � sca is at an angular frequency about ω = 1.2,
whereas the location of the double root in k is at ω = 0.77. This difference is large
enough to find a clear answer to the question. However, as mentioned in § 4.6.1, such
a profile is more difficult to simulate since it is stiffer. Therefore, the runs are done
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Figure 20. Global mode. From top to bottom, velocity u at 1/8, 1/4, 1/2, 3/4 of the
computational domain for the Bickley jet. (a) u(t); (b) the associated power spectrum ek(ω)
(s = 0.13, n = 1, N = 257, 30 000 time steps are shown). This is clearly a self-sustained
oscillator behaviour at an angular frequency ω = 0.20. The corresponding Strouhal number,
defined by St = 2f L̄/Ū is St = 0.06.
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Figure 21. Sequence of a simulation after the convective/absolute transition (vorticity,
s = 0.1, N = 257 and n = 1. Each view is separated by 300 time steps).

mainly with N = 513. For s = 1, before the linearly predicted transition which occurs
at sca = 0.935, the jet behaves like an oscillator with the angular frequency of the
transition and not in a convective fashion with the angular frequency of the maximum
growth rate as one could expect. Different values of s, far from the transition, are then
tried. It is found that the jet behaves like an oscillator for all the density ratios. For
s � 0.75 (a nonlinear computed value) the oscillations are damped and ω depends on
s. However, the oscillations are self-sustained for s < 0.75 with a well-defined angular
frequency ω � 0.66 which is not the value predicted by linear instability theory. The
main results of these computations are summed up in table 2 and in figures 22 to 26.

A plausible explanation of the behaviour of the top-hat-like jet as an oscillator
for all the values of s used may be obtained by looking at the analytic dispersion
relation of a top-hat jet (n = ∞). This relation reads (Huerre & Monkewitz 1990; Yu
& Monkewitz 1993):

s

(
2− 2ω

k

)2

=

(
2ω

k

)2

a(k), (4.14)

where a(k) = − tanh(k) for the varicose mode and a(k) = −1/ tanh(k) for the sinuous
mode. Indeed, the calculations for n = 4, presented in figure 7, give a transition at
sca � 0.93 with an angular frequency equal to 0.77, a spatial growth rate equal to 1.19
and a wavenumber equal to 0.6. For a vortex sheet, the use of the dispersion relation
(4.14) gives, at the same value of s, two saddle points near the real omega axis, Re(ω),
with Im(ω0) = ±0.05, an angular frequency equal to 0.88, a spatial growth rate equal
to 1.09 and a wavenumber equal to 0.42. This clearly shows that the vortex sheet
approximation is, globally, a good one for the convective/absolute instability onset
of the vortex layer with n = 4.
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Figure 22. Global mode. From top to bottom, velocity u at 1/8, 1/4, 1/2, 3/4 of the
computational domain for the top-hat-like jet. (a) u(t); (b) the associated power spectrum
ek(ω) (s = 1.2, n = 4, N = 257, 6000 time steps are shown). This is a damped global behaviour
at an angular frequency ω = 0.84 with pairing in the second half part of the computational
domain (ω = 0.44 and x > Lx/2).
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Figure 23. As figure 22, but s = 1. The angular frequency is ω = 0.77 with pairing in the
second half part of the computational domain (ω = 0.38 and x > Lx/2).

Equation (4.14) presents the symmetry of a general Rayleigh equation: the solutions
are complex conjugate. Furthermore it admits, for all s, two complex conjugate saddle
points with Re(ω0)/Re(k0) not in the range of U0 , i.e. Re(ω0)/Re(k0) > maxy(U0(y)),
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Figure 24. As figure 22, but s = 0.8 (n = 4, N = 257, 8000 time steps are shown). This is a
damped global behaviour at an angular frequency ω = 0.68 with pairing in the second half
part of the computational domain (ω = 0.33 and x > Lx/2).

as shown in figure 27 when s = 1 for example. This is also the case for n = 4 with
Re(ω0)/Re(k0) = 1.28. Therefore, the corresponding inviscid eigenfunctions are the
asymptotic limits of the Orr–Sommerfeld ones as Re → ∞ (Ledizès, Monkewitz &
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Figure 25. Global mode. From top to bottom, velocity u at 1/8, 1/4, 1/2, 3/4 of the
computational domain for the top-hat-like jet. (a) u(t); (b) the associated power spectrum
ek(ω) (s = 0.7, n = 4, N = 257, 16 000 time steps are shown). This is a self-sustained oscillator
behaviour at an angular frequency ω = 0.67 with pairing in the second half part of the
computational domain (ω = 0.34 and x > Lx/2).
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Figure 26. As figure 25, but s = 0.5 (n = 4, N = 257, 12 000 time steps are shown). This
is a self-sustained oscillator behaviour at an angular frequency ω = 0.64 with pairing in the
second half part of the computational domain (ω = 0.34 and x > Lx/2).

Huerre 1995). Consequently, the top-hat and, eventually, top-hat-like jets are
absolutely unstable for all density ratios. So, the selected frequency is due to a
nonlinear mechanism.
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Re(ω0)/Re(k0) is greater than 1 and thus it is not in the range of U0.

We may ask if the same arguments could be extrapolated to the Bickley jet?
However, in this case, Re(ω0)/Re(k0) is in the range of U0 and the extrapolation could
be done only if there are no large viscous intervals, on the y-axis, where the Orr–
Sommerfeld eigenfunction does not reduce to a solution of the Rayleigh equation
when Re → ∞ (Ledizès et al. 1995). However, if this is the case, sca should be
understood as a convective/absolute transition from an always convectively unstable
sinuous mode, for which no saddle point is found, to an always absolutely unstable
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varicose mode when lowering the density ratio. Indeed, according to the linear theory,
when s decreases, the maximum growth rate of the varicose mode increases and
overshoots the sinuous one. In fact, these extrapolations are wrong since the varicose
initial perturbation, coming from initial conditions which are not exact solutions
of the Navier–Stokes equations, are convected outside the domain. When lowering
s, the varicose mode becomes marginal absolute and the nonlinear calculations
show that the Bickley jet behaves as an oscillator, at the corresponding marginal
angular frequency, for values of s far below sca according to Dee & Langer’s selection
criterion. Thus, the transition observed in the Bickley jet is really a convective/absolute
transition of the varicose mode alone.

4.10.3. Scenario of the density effect

As we have seen in § 4.10.2, a description based on the Dee & Langer (1983)
criterion, although successful in the Bickley jet case in stating the density ratio effect,
is not fully satisfactory in the top-hat-like jet case. We propose a scenario to complete
this description in this paragraph.

For ‘high’ density ratios, jet dynamics is dictated by a linear mode selection in
good qualitative agreement with the linear predictions presented in figure 3: the most
unstable mode, the sinuous one, develops and forces the frequency of the jet. As
density ratio decreases, the varicose mode becomes more and more unstable while the
sinuous one becomes less and less so; the difference of growth rates between these two
modes thus becomes smaller and smaller. When both modes have close growth rates,
they can both coexist in the jet. For smaller density ratios, a global damped mode
(the frequency is the same for the whole jet, but oscillations are slowly damped) exists
for a small range of s values. When s is further decreased, there is a critical nonlinear
value that we note sNL

ca that could be different from the well-known s lin
ca provided by a

linear analysis below which the jet is absolutely unstable. In this case, the dynamics is
essentially varicose and the frequency selection is made through a nonlinear process.
The key point is that the absolute frequency depends on the density ratio s, but is
not determined by the convective/absolute transition.

Results for n = 4 (top-hat-like) case are gathered in figure 28. Linear transition
is symbolized with a diamond. It belongs to the area where the jet mode is global
and damped (it is a convective mode, Huerre & Monkewitz 1985). The key transition
is that of the varicose mode: it has a transition from a global and damped mode
to a global and self-sustained, i.e. absolute, mode. The critical density ratio sNL

ca is
between 0.70 and 0.75. Let us emphasize that this value is in good agreement with
that announced by Raynal et al. (1996) and the corresponding frequency is different
from the ‘box-frequency’ one.

Finally, note that this scenario depends on the profile; for the Bickley jet (n = 1),
the same scheme applies, but the transition density ratio is close, if not equal, to the
linear prediction s lin

ca .

4.10.4. Note on the domain size and boundary effects

As shown in table 2 (column 7), the nonlinear computations have been performed
for different values of the domain size to gain confidence that the phenomena studied
are not spurious. The same angular frequencies are obtained, when the domain size
is varied (column 5), and they have nothing to do with ‘box frequency’ reported on
the study of boundary effects by Buell & Huerre (1988). The box angular frequency
is πU0(0)/Lx = 0.1 (0.05 when doubling the domain length) and all the measured
angular frequencies, of the physical phenomenon studied, are between 0.2 and 0.35 for



182 S. Ravier, M. Abid, M. Amielh and F. Anselmet

0.2 0.4 0.6 0.8 1.0 1.2
0.5

0.6

0.7

0.8

0.9

s

ω

Absolute global
mode

Damped global
mode

Figure 28. Angular frequency, ω, versus density ratio, s, of the varicose mode in the
top-hat-like jet, (n = 4), case. There are two different domains: global damped (convective but
with a well-defined frequency) and global self-sustained (absolute). The diamond represents the
linear prediction of the transition that occurs at s lin

ca = 0.93 whereas the nonlinear calculations
give a nonlinear critical value sNL

ca � 0.75. Note that the angular frequencies obtained in the
nonlinear calculations are different from the ‘box angular frequencies’: 0.1 and 0.05.

n = 1 and between 0.64 and 0.9 for n = 4. Furthermore, note that angular frequencies
measured in the nonlinear calculations, of the present work, are in agreement with
those predicted by the linear instability theory calculations presented in § 3. For
example, for n = 1, s = 0.13, the angular frequency measured in the nonlinear
calculation is 0.2 (Figure 20). The angular frequency predicted by linear calculations
is 0.22 for n = 1, s = 0.14 from figure 5(b) for the pinching point (which corresponds
to the most amplified unstable mode in this case). As another example, for n = 4,
s = 1 the angular frequency measured in the nonlinear calculation is 0.77 (figure 23).
The angular frequency predicted by linear calculations is also 0.77 from figure 7(b)
for the pinching point. Clearly, this highlights the fact that measured frequencies, in
the present nonlinear calculations, are not spurious because they are in agreement
with linear predictions rather than with ‘box frequency’ or boundary effects.

4.10.5. Associations of vortices: pairing

Nonlinear terms may lead to coupling between vortices. Pairing may then be
observed on temporal views or on the power spectrum of a temporal velocity signal
(figure 29). On the power spectrum, it is found that the first subharmonic of the
main frequency (the fundamental) is much more important than the main mode.
This result was already established, experimentally, by Yu & Monkewitz (1993). It
is also found, only for a varicose global mode with n = 4 , that the fundamental is
typically observed in the first quarter of the computational domain whereas the first
subharmonic is observed in the remaining part as shown in figures 22 to 26.

4.11. Reynolds-number influence

All the simulation runs have been carried out for a Reynolds number arbitrarily set
to a value of 1000. In this section, we will focus on the influence of this parameter.
If the Reynolds-number value is lowered, then, the influence of dissipative effects is
enhanced. The Reynolds-number influence depends on the value of the parameter
n. We recall that, in the present study, the perturbations are not forced since the
instabilities are only triggered by the initial dissimilarity between the initial velocity
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Figure 29. Pairing of vortices. (a–e) Successive views (s = 0.8, N = 257, each view is separated
by 200 time steps) and (f ) power spectrum of the temporal signal of the axial velocity. The
first subharmonic (ω = 0.32) of the main mode (ω = 0.64) dominates the spectrum: this is an
evidence of pairing.

profile and a steady laminar solution of the Navier–Stokes equations, and by the
numerical truncation errors.

4.11.1. The Bickley jet n = 1

For the velocity profile with n = 1, the Reynolds number influence is not strong.
For Re > 400, the differences we can observe with respect to the Re = 1000 case
remain rather small, even though the viscous effects are felt as progressively becoming
stronger; the appearance of the sinuous mode is delayed in time, but there is no change
of the predictions nor of the nature of the observed dominant mode. In particular,
note the following.

(i) For s > 0.3, there is no global mode. Only the sinuous mode can develop and
it is of the convective type.

(ii) For s = 0.2, there is a damped global mode.
(iii) For s = 0.1, there is an absolute global mode with a frequency which almost

does not change. Its angular frequency ω is reduced by about 10 %, from (Re = 1000)
ω about 0.20 to (Re = 400) ω about 0.18.

For Re = 200, the global mode which is observed for s = 0.10 is not absolute
anymore: it is damped. Therefore, for such dissipative effects, the critical density
ratio sNL

ca is significantly affected since, if it exists, its value is lower than 0.1. Indeed,
as no simulation was performed for s smaller than 0.1, we could not display it.
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Figure 30. (a) Longitudinal velocity and (b) density profiles at x = Lx/4 for Re = 200 and
n = 4 are presented with dots. The inlet velocity and density profiles (u0, ρ0) are presented,
for comparison, with solid line in the n = 1 case and with dashed line in the n = 4 case. The
velocity profile is modified by diffusion and it is close to that of the case n = 1.

When the Reynolds number becomes smaller than 150, the jet is almost stable: for
the simulated durations (20 000 time steps for N = 257), no instability can develop
before the 16 000th step (that is, three to four times later than for Re = 1000) and
this development is very slow as compared to what is obtained for larger Reynolds
numbers.

4.11.2. The top-hat-like jet n = 4

For the velocity profile with n = 4, trends are quite different. Indeed, for the Bickley
jet, diffusion has little influence on the profile since it is associated with rather small
gradients. On the contrary, for n = 4, it is observed that the main effect of viscous
diffusion is to smooth out the velocity gradients and, to a smaller extent, the density
gradients. For Re = 800, there is almost no difference with respect to Re = 1000. For
Re = 600, the global mode for s = 0.7 is not self-sustained anymore, but damped.
The critical value of the density ratio is then estimated as being sNL

ca (Re = 600) = 0.5.
The angular frequency of the self-sustained global mode for s = 0.3 is switched from
ω(Re = 1000) = 0.60 to ω(Re = 600) = 0.51.

For Reynolds numbers smaller than 400, the profile is significantly changed so that
it is not possible anymore to say that the profile corresponds to n = 4. Indeed, as
figure 30 shows, the velocity profile which is obtained at x = Lx/4 after advection
of the initial perturbation (during the time for which the jet is laminar before the
sinuous instability can develop) is very close to those obtained for the Bickley jet. It
is then not surprising to find the sinuous mode, even for s = 0.5. The density profile
is also modified, but by a smaller amount: it still displays a plateau in the central
region, which the velocity profile does not display, and the differences with respect to
the mean profile which is obtained for Re = 600 are not significant.

Therefore, for n = 4, when the Reynolds number is decreased, the basic flow is
modified and it tends to become like that for n = 1, but it never exactly reaches it
since the condition with n = 4 is still imposed right in the entry section.

5. Conclusion
Free evolving, variable-density and incompressible plane jets have been studied

in the linear and nonlinear regimes. The linear study was performed using
diagonalization and shooting, two complementary methods, to solve the variable-
density Rayleigh equation both in temporal and spatial stability frameworks. It is
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n Mode sca ω0
r (k0; sca) ωr (max(−ki); sca) Re

1 Sinuous – – – ∞
1 Varicose 0.145 0.21 0.21 ∞
4 Sinuous – – – ∞
4 Varicose 0.935 0.77 1.07 ∞

Table 1. Summary of linear predictions.

n s Observed mode
s − sca

sca

ω
ω − ω0

r (k0; sca)

ω0
r (k0; sca)

Lx

Lx

Ly

N
δω

Ly

N T Re

1 1 Sinuous – 0.35 – 32; 64 2 129; 257 10; 20 480 700; 1000
1 0.3 Sinuous – 0.25 – 32; 64 2 129; 257 10; 20 650 700; 1000
1 0.2 Varicose 0.38 0.2 −0.05 32; 64 2 129; 257 10; 20 650 700; 1000
1 0.13 Varicose −0.1 0.2 −0.05 32; 64 2 129; 257 10; 20 650 700; 1000
1 0.1 Varicose −0.31 0.21 0 32; 64 2 129; 257 10; 20 650 700; 1000
4 1.5 Varicose 0.6 0.9 0.17 32; 64 2 257; 513 5; 10 250 700; 1000
4 1.2 Varicose 0.27 0.85 0.10 32; 64 2 257 5 250 700; 1000
4 1 Varicose 0.07 0.77 0 32; 64 2 257; 513 5; 10 250 700; 1000
4 0.8 Varicose −0.14 0.68 −0.12 32; 64 2 257; 513 5; 10 250 700; 1000
4 0.7 Varicose −0.25 0.67 −0.13 32; 64 2 257; 513 5; 10 250 700; 1000
4 0.6 Varicose −0.36 0.64 −0.17 32; 64 2 257; 513 5; 10 250 700; 1000

Table 2. Summary of nonlinear results.

found that the jet is subject to varicose (asymmetrical deformation) and sinuous
(symmetrical deformation) unstable modes. When the density is constant, the sinuous
mode dominates. Lowering the density enhances the varicose mode which becomes
dominant before undergoing a convective/absolute transition. Only the varicose
mode is found to present such a transition. The main results of the linear study
are summarized in table 1. The pertinence of these linear results to a more
realistic nonlinear evolution was then tackled by direct numerical simulation of the
incompressible variable-density Navier–Stokes equations. A computational procedure
has been developed based on a multigrid method to solve the pressure equation
which is more complicated than the classical Laplace equation that we obtain in
the constant density case. Many boundary conditions are tested and the best ones
are reported. The procedure developed has been checked by reproducing the linear
results, obtained in the first part of the study, when the nonlinear terms of the
Navier–Stokes equations are linearized about a main profile. Once the procedure is
tested, nonlinear computations are conducted and the main results are summarized in
table 2. The nonlinear study has shown that for the Bickley jet, n = 1, the nonlinear
evolution is predicted well by a local linear marginal absolute instability criterion:
the jet undergoes self-sustained oscillations (global mode) at a well-defined frequency
with a corresponding Strouhal number St � 0.06, based on the jet diameter, for a
density ratio s < sca = 0.145. These values coincide with those computed linearly by
a local convective/absolute transition. Contrarily, for the top-hat-like jet, n = 4, the
linear study fails: it predicts global behaviour for s < sca = 0.935 and a corresponding
Strouhal number St � 0.25. However, global modes are nonlinearly observed for all
the values of s used. For s � 0.75 (a nonlinear computed value) the oscillations are
damped and St depends on s. The oscillations are self-sustained for s < 0.75 with a
well-defined St � 0.21. This may explain the discrepancy between the experimental
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studies of Yu & Monkewitz and those of Raynal et al.: for a top-hat (or a top-
hat-like) jet, global behaviour is possible for all the values of s, but self-sustained
oscillations are favoured for s < 0.75 and therefore are much more likely to occur in
that range in agreement with the s < 0.7 found in the experimental work of Raynal
et al. A tentative explanation of the global behaviour observed in the top-hat-like jet
for all values of s is also given. It is based on solutions of the Squire equation that
are also solutions of the Rayleigh equation, in the limit Re → ∞, when the phase
velocity is greater than one.

Fruitful discussions with S. Ledizès, P. A. Monkewitz and E. Villermaux are
acknowledged.

Appendix A. Spatial discretization
For the spatial discretization, finite-difference schemes are used:
(i) centred in the inner of the computation domain,
(ii) not centred but second-order accurate on the borders.

Special attention is paid to border formulae since the lowest order in the domain
limits the global order for all the simulations. Since computation time and complexity
(boundary conditions especially) increase faster than benefits, no high-order methods
are used. With such a discretization scheme, the multigrid method to solve (4.1) is
more straightforward. For an inner grid mesh point:

∂a

∂x

∣∣∣∣
(i,j )

=
1

2 hx

(
a(i+1,j ) − a(i−1,j )

)
,

∂a

∂y

∣∣∣∣
(i,j )

=
1

2 hy

(
a(i,j+1) − a(i,j−1)

)
,

and for the second-order derivatives,

∂2a
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∣∣∣∣
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hx
2
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a(i,j+1) − 2 a(i,j ) + a(i,j−1)

)
.

For the points on the border of the grid, the formulae are

∂a

∂x

∣∣∣∣
(1,j )

=
1

2 hx

(
−3 a(1,j ) + 4 a(2,j ) − a(3,j )

)
,

∂a

∂x

∣∣∣∣
(N,j )

=
1

2 hx

(
3 a(N,j ) − 4 a(N−1,j ) + a(N−2,j )

)
,

and

∂2a

∂x2

∣∣∣∣
(1,j )

=
1

hx
2

(
2 a(1,j ) − 5 a(2,j ) + 4 a(3,j ) − a(4,j )

)
,

∂2a

∂x2

∣∣∣∣
(N,j )

=
1

hx
2

(
2 a(N,j ) − 5 a(N−1,j ) + 4 a(N−2,j ) − a(N−3,j )

)
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which are second-order accurate. The similar formulae for y derivatives are straight-
forward.

Appendix B. Solution of the pressure equation
To solve the linear elliptic equation of pressure with appropriate boundary

conditions:

∇ ·
(

1

ρ
∇p

)
= ∇ ·

(
v�

�t

)
in Ω, (B 1)

B(p) = 0 in ∂Ω, (B 2)

which is more complicated than the Poisson equation, that would be obtained for a
homogeneous fluid, a multigrid method is used. This method presents the advantage
of solving the equations (B 1) and (B 2), discretized on N 2 two-dimensional grid
points, in O(N 2 log(N )) operations, which is comparable to FFT based methods.
As ‘Unfortunately there is not a single multigrid algorithm that solves all elliptic
problems. Rather there is a multigrid technique that provides the framework of
solving these problems’ (Press 1992), this section is devoted to a description of the
method inspired by Briggs & Henson (1987) and used in the present study.

For its ease of implementation, a central finite-difference technique is used to
discretize equations (4.4) and (4.5) on a uniform grid Gh of mesh size h. Let
∇h = (δh/r, δh) denote the approximate gradient on Gh, δh the finite-difference
approximation of the spatial partial first derivative given in § 4.4 and r the aspect
ratio of the rectangular computational domain. (The use of the aspect ratio transfers
the geometrical anisotropy of the grid to the pressure equation and offers the comfort
of using a square mesh and thus treats x and y directions in the same way.) Then, the
approximate pressure equation, on Gh, can be written as a system of linear equations:

Ahph = f h, (B 3)

Where:

Ah = ∇h ·
(

1

ρh
∇h

)
on Gh, Ah = Bh on ∂Gh,

f h = ∇h ·
(

v�h

�t

)
on Gh, f h = 0 on ∂Gh.

The detailed expression of the linear operator Ah is very lengthy and complicated
and thus not given in the present paper.

Let vh denote an approximation to the exact solution of the difference equation
(B 3). Then the residue, rh, and the error (the correction), eh, satisfy the following
equations:

rh = f h − Ahvh, Aheh = Ah(ph − vh) = rh.

The multigrid technique uses the smoothing property of some relaxation schemes,
such as the Gauss–Seidel one used in the present calculations, successively on coarser
and coarser grids G2h, G4h, G8h, . . . , G(Ng−1)2h (the descending phase) to obtain a good
approximation of the error (the correction) on successively finer and finer grids, . . . ,

G8h, G4h, G2h, Gh (the ascending phase). In this notation, Ng is the grid number and
is related to the grid resolution N by N = 2Ng + 1. The travel between the different
grids is ensured by the restriction operator I 2h

h in the descending phase and by the
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prolongation operator I h
2h in the ascending phase. A pair of descending–ascending

phases is called a V-cycle. A V-cycle can be treated with a recursive procedure:

vh ← V h(vh, f h)
1. Relax α1(h) times on Ahvh = f h.
2. If Gh is the coarsest grid relax α2 times on Ahvh = f h.
Else: f 2h ← I 2h

h (f h − Ahvh)
v2h ← 0
v2h ← V 2h(v2h, f 2h)
Correct vh ← vh + I h

2hv
2h

Relax α1(h) times on Ahvh = f h.

In the present calculations the following restriction and prolongation operators are
used:

I 2h
h =




1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16


 , I h

2h =




1
4

1
2

1
4

1
2

1 1
2

1
4

1
2

1
4


 ,

where the coefficients must be interpreted as the fractions of the neighbouring values
the central point receives, in the restriction case, and the fractions of its own value
the central point gives to its neighbours in the prolongation case. These operators
verify the Galerkin condition (Briggs & Henson 1987; Press 1992).

Many fashions of combining V-cycles lead to different multigrid methods. The
simplest one, that consists in applying successively many V-cycles, is used. In practice,
it is found, for example, that only five V-cycles are sufficient to reduce the residue
norm, inside G, by a factor of 103 with N = 129, α1(h) = int (80h0.6 + 2)†, r = 2 and
α2 = 100. As the temporal simulations will be started with a quasi-incompressible
velocity field giving initial residue norm O(10−3), this residue will be O(10−6) after
five or six V-cycles. Then, the choice of small �t will maintain the residue norm to
that value with approximately the same number of V-cycles overall the simulation.

Finally, Dirichlet (B = Identity) and Neumann (B = ∂/∂n, n is the normal direction
to ∂Ω) boundary conditions are used. It is found that the Neumann boundary
condition is more appropriate for the jet flow (The Dirichlet boundary condition
prevents the jet from leaving Ω). However, with Neumann boundary condition, the
problem is ill posed in the sense that the pressure is determined up to an undetermined
constant. This does not matter since only the gradient of the pressure is used in the
momentum equations. Furthermore, to eliminate the high-wavenumber oscillations of
the pressure solution, owing to the use of central finite differences on a non-staggered
grid, a compact spatial filter, that confines its effect to high wavenumbers, is used as
explained in Appendix C.

Appendix C. Spatial filtering
In a one-dimensional grid of mesh size h, the minimum wavelength is 2h

corresponding to a maximum wavenumber kmax = 2π/(2h) = π/h. The spatial filtering
in a direct numerical simulation with central finite differences can be justified by

† Note that for the same time of calculation, the variable number of relaxation sweeps
α1(h) = int (80h0.6 + 2) is twice more efficient than α1 = 7 = constant in reducing the residue
by the same factor.
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Figure 31. Plot of modified wavenumbers versus normalized wavenumbers for (a) the first
derivative approximation and (b) for the second derivative approximation. –, exact; - - -, w1;
·–·, w2.

looking at the truncation errors of the differences in the wavenumber space (Fourier
space). Using h as a length scale, the exact first derivative of a Fourier mode, exp(ikx),
is ik exp(ikx) while using the first derivative central difference formula we obtain:

exp(ik(x + 1))− exp(ik(x − 1))

2
= i sin(k) exp(ikx),

leading to a modified wavenumber (Lele 1992) w1(k) = sin(k), k ∈ [0, π]. In the same
way, the second derivative central difference formula gives w2(k) = 2(1− cos(k)) and
applying successively twice the first derivative formula gives w′2(k) = (1− cos(2k))/2.
These modified wavenumbers are plotted in figure 31. It is evident from these figures
that to obtain better resolved wavenumbers, the grid must be refined (kmaxh =
π = constant). Furthermore, for wavenumbers k � kmax/2 a poor approximation
to the derivatives is obtained independently from the resolution. Thus, this range
of wavenumbers can be treated by a filter that confines its effects in that range.
In addition, the filter can be designed to eliminate exactly the highest wavenumber
kmax which is a pathological solution of the discretized pressure equation (4.4).
Compact filters can do this work very well. Let fj denote a function value at nodes

xj = h(j − 1), 1 � j � N and f̌ j the filtered values. A fourth-order compact filter
(Lele 1992; Slinn & Riley 1998) that requires solution of a tridiagonal matrix is used.
It can be formulated in the following way:

α1f̌ j−1 + f̌ j + α1f̌ j+1 = a1fj + 1
2
b1(fj+1 + fj−1) + 1

2
c1(fj+2 + fj−2).

Using h as a length scale, the corresponding transfer function, T (k), defined bŷ̌
f j = T (k)f̂j , with Fourier mode solutions:

fj = f̂j exp(ikj ), f̌ j =
̂̌
f j exp(ikj ), k ∈ [0, π],

reads:

T (k) =
a1 + b1 cos(k) + c1 cos(2k)

1 + 2α1 cos(k)
.
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Figure 32. –, Plot of the transfer function of the fourth-order compact filter with α1 = 0.4.
- - -, no filter. Note that most of its effects are confined to k/kmax � 0.5.

A family of fourth-order compact filters can be generated when the constraints

T (π) = 0,
dT

dk
(π) = 0.

are added. (Note that the first constraint is exactly what is needed to eliminate the
highest wavenumber pathological solution of the pressure equation if the filter is
applied to the pressure.) The coefficients of the filter are then:

a1 = 1
8
(5 + 6α1), b1 = 1

2
(1 + 2α1), c1 = −1

8
(1− 2α1).

A filter with α1 = 0.4 is used and the corresponding transfer function is plotted
on figure 32. For the boundary nodes, explicit fourth-order formulation that exactly
filters k = π wave is used:

f̌ 1 = 15
16

f1 + 1
16

(4f2 − 6f3 + 4f4 − f5),

f̌ 2 = 3
4
f2 + 1

16
(f1 + 6f3 − 4f4 + f5).

Finally, to obtain a two-dimensional filter, two sweeps of the one-dimensional filter
are orthogonally applied and a check that the relative energy of the filtered function
is diminished by less than 10−6, compared to that of the initial function, is performed.
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